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Abstract

Tridiminished icosahedron graph is one of nonahedral graphs. In this work, using knowledge of
difference equations we drive the explicit formulas for the number of spanning trees in the sequence of some
new families of graphs of average degree four based on Tridiminished icosahedron graph by electrically
equivalent transformations and rules of weighted generating function. Finally, we compare the entropy of
our graphs with other studied graphs with average degree being 4.
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1. Introduction

Deriving closed formulae of the number of spanning trees for various graphs has attracted the attention of a
lot of researchers. The importance of this research line is in fact due to:

1- Enumerating specific chemical isomers,

2- Counting the number of Eulerian circuits in a graph,

3- Solving some computationally hard problems such as the Steiner tree problem and traveling
salesman problem.

4- Deriving formulas for different type of graphs can be helpful in identifying those graphs that
contain the maximum number of spanning trees. Such an investigation has practical consequences
related to network reliability, [1-12].

A spanning subgraph of a graph G(V,E) is a subgraph with vertex set V. A spanning tree is a spanning
subgraph. (G) denote the complexity (Number of spanning trees of a graph G).
There exist various methods for finding this number. Kirchhoff [13] gave the famous matrix tree theorem: if
D is the diagonal matrix of the degrees of G and A denote the adjacency matrix of G, Kirchhoff matrix L =
D — A has all of its cofactors equal to 7(G).
Another method to count the complexity of a graph is using Laplacian eigenvalues. Let G be a connected
graph with k vertices. Kelmans and Chelnoknov [14] derived the following formula:

©(6) = LTI . (1.1)
Where p; = u, =...2 u, = 0 are the eigenvalues of the Kirchhoff matrix L.
Degenerating the graph through successive elimination of contraction of its edges represent the core of
another way to compute the complexity of a graph [15,16, 17]. If G = (V,E) is a multigraph with e € E,
then G. e is the graph obtained from G by contracting the degree until its endpoints are a single vertex. The
formula for computing the number of spanning trees of a multigraph G is given by:
7(G) =1(G —e) +1(G.e) (1.2)
This formula is beautiful but not practically useful (grows exponentially with the size of the graph- may be
as many as 2/E@! terms. For a summary of further results for calculating umber of spanning trees of graphs,
see [18,19,20,21].
2. Electrically equivalent transformations
Kirchhoff's motivation was study of electrical networks: an edge- weighted graph can be regarded as an
electrical network, where weights are the conductance of the respective edges. The effect conductance
between two specific vertices x, y can be written as the quotient of (weighted) number of spanning trees and
the (weighted) number of so-called thickets, i.e., spanning forests with exactly two components and property
that each of the components contains precisely one of the vertices x,y [22,23,24,25]. In the following, we
list the effect of some simple transformations on the number of spanning trees. Let H be an edge weighted
graph, H' be the corresponding electrically equivalent graph, 7(H) denotes the weighted number of spanning
trees H.

i. Parallel edges: If two parallel edges with conductances x and y in H are merged into a single edge
with conductances x + yin H', then t(H) = t(H).
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ii. Serial edges: If two serial edges with conductances x and y in H are merged into a single edge with
conductance == in H', then t(H") = — t(H).
x+y x+y
iii. A —Y Tansformation: If a triangle with conductances a, b and c in H is changed into an electrically

. . b+bc+ b+bc+ b+bc+ . ’
equivalent star graph with conductances x = = ac 2y =""""Zandz = =——"in H, then

' (ab+bc+ca)?
T(fi) = ———jﬁzf———T(ff)

iv. Y — A Transformation: If a star graph with conductances x, y and z in H is changed into an
electrically equivalent triangle with conductances a = - 2 p=—2_andc=—2—inH/ then
1

+y+z x+y+z x+y+z

T(H) = a+b+cT(H)'
In mathematics one always tries to get new structures from given ones. This also applies to the realm
of graphs, where one can generate many new graphs from a given set of graphs.
In this work, we compute the number of spanning trees of four sequences of graphs of average
degree four based on Tridiminished icosahedron graph we named it X,,, T,, Y,, and Z,, respectively.
3. Number of spanning trees in the sequences of X,, graph
Consider the sequence of graphs X;,X,, ..., X,, constructed as shown in Figure 1.
According to this construction, the number of total vertices |V (X,,)| and edges | E(Xxn)| are |V(Xn)| =
9n-6 and |E(Xn)| =18n-15,n=1, 2, .... The average degree of X,, is in the large n limit which is 4.

AA&

Fig. (1): Some sequences of graph Xn

Theorem 1. For n > 1, the number of spanning trees in the sequence of the graph X,, is given by
3 x 4n2 ((169 —27+/39)(25 + 4v39)" + (25 — 4v39)" (169 + 27\@)) (=5(=3+39) + (63 + 11v39) (1249 + 200x/3_9)_1+")Z

169 (30 + 6(8 +v39)(1249 + 200\@)’”")2
Proof: We use the electrically equivalent transformation to transform X; to X;_,. Fig. (2) illustrates the

transformation process from X, to X, .
‘
1

X,
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4a
(24a,+43)(8a, +3)

24a,+13

24a,+13

11a, +4
8a, +3

4a, +2
(24a,+13)(8a, +3)

2(2a,+1) \ 3(11la, +6)
42a, +13

3(11a,+6) 2

3(11a,+6) 200, 113

2(2a,+1)

24a, +13

3(11a,+6) 1la, +6

24a,+13 42a, +13
H9 Hm

37a, + 20
24a, +13

37a, + 20
24a, +13

Hy =X,
Fig. (2): The transformations from X2 to X3.
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Using the properties given in section 2 , we have the following the transformations:-

1 3 +1)
T(Hy) = [[1P1(Xp), T(Hy) = T(Hy), t(Hs) = [—— L—131(H,), 7(H,) = [Z(Za +1)]3 7(H;),7(Hs) =
3a. 2a,+1 2(8a+3)
s iS]ST(H4) ©(He) = t(Hs), T(H;) = 9(— ) (Hs)'T(Ha) = [m] T(Hg), T(Hy) =
24a,+13
7(Hg), T(Hyp) = m 7(Ho) and T(X1) = T(Hw)-

Combining these eleven transformations, we have 7(X2) = 4(24az + 13)*t(Xy). (3.1)
Further T(Xy) = [T72, 4(24a; + 13)%t(X,) = 3 x 4" 'a}[[TL,(24q; + 13)])? (3.2)
37a;+20 L. R R .

Where &1 = leﬁvl = 2,3,..., M. |ts characteristic equation is 244* — 244 — 20 = 0, which have two
roots
J_g \/_ 37a;+20
roots 44 = — —and 42 = . Subtracting these two roots into both sides of @i-1 = 5.2, we get
_ 3-V39 _ 37a;420 3-V39 _ 25 + 44/39 ai—g
-1 6  24a;+13 6 ( )- 24a;+13 (3.3)
7
3+V39 _ 37a;4+20  3+V39 _ o ai_3+T
Qi1 =7 T 240413 6 (25 -4 39)'(24ai+13) (3.4)
q-37Y3°

Let by = ﬁ Then by Egs. (3.3) and (3.4), we get bi—1 = (1249 +200V39)b; and b = (1249 +
i
200v/39)""b,,.

Therefore

(1249+20039)b;)"~ ‘(3+r

EASEE) VM S £ 1)

36

a; = (1249+200v39)b;)"—ib,—1
Thus
@ = (12494200+/39)™""1(63+11y/39)+5(3-+/39)
1= 6(1249+200v39)""1(8+/39)+30 (3.5)
) ) _ 37an+20 ) L.
Using the expression dn-1 = 5, —and denoting the coefficients of 37@n + 20 and 24ax + 13 as @, and
n
Br we have
24a, + 13 = a,(37a, + 20) + By(24a, + 13),
sta 413 = aG7a + 20) + b, (24a, +13)
In-1 T 22 = (37a, + 20) + By (24a, + 13)
_ a,(37a, + 20) + f,(24a, + 13)
24+ 13 = 370, + 20) + B, (244, +13)’
_ @j(37a,+20)+Bi(24an+13)
24a, +13 = @;_1(37an+20)+Bij_1 (24an+13)’ (36)
_ @i11(37an+20)+Bi41(24an+13)
24041y + 13 = a;(37an+20)+B;(24an+13) ’ (3.7
2a, +13 = @y (37a, + 20) + B,_,(24a, + 13)

an_3(37a, + 20) + Bn_3(24a, +13)
Substituting Eq. (3.6) into Eq. (3.2), we obtain
©(X,) = 3 x 4" 'a?[a,_,(37a, + 20) + B,_,(24a, + 13)]? (3.8)

where @o = 0,8y = 1 and a1 = 24,5, = 13,
By the expression a,,_; = % and Egs. (3.6) and (3.7), we have
@ip1 =500 — a;_y; By =508 — Biy (3.9
The characteristic equation of Eq. (3.9) is u? — 50u + 1 = 0 which have two roots # = 25+4@ and
1, = 25439
The general solutions of Eq. (3.9) are @ = Cif + it B = dypi + dapth.
Using the initial conditions ao =0,8p = 1and @1 = 24,5, = 13 yields
i =225 + 4v39) -2 (25 - 4v39)'; B = (2 (25 + 4v39)! + (22 (25 - 4939) (3.10)
If an =1 it means that Xn Wlthout any electrically equivalent transformation. Plugging Eq. (3.10) into
Eq.(3.8), we have
T(X,) = 3 x 4n~1 2[(481+77r)(25+4\/_)n 24 (481 77\ﬁ)(25 4\/—)71 22,0 > 2. (3.11)

Whenn =1 ©(X;) =3 which satisfies Eq.(3.11). Therefore, the number of spanning trees in the sequence
of the graph Xx is given by

1(X,) = 3 x 4"1a [(481+77F 481 77F

) (25 + 4V3)M T 4 () (25 — 43D A n 2 1 (3.12)
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where
(12494200+/39)™""1(63+11y/39)+5(3-+/39)
= >
1 6(1249+200+39)"~1(8++/39)+30 mzl (3.13)
Inserting Eq. (3.13) into Eq.(3.12) we obtain the result. 0

4. Number of spanning trees in the sequences of T, graph

Consider the sequence of graphs T;, T,, ..., T,, constructed as shown in Figure 3.
According to this construction, the number of total vertices |V(T,)| and edges | E(T,,)| are |V(T,)| =
9n-6 and |E(T,)| =18n-15,n=1, 2, .... The average degree of T,, is in the large n limit which is 4.

AL

1 2 3

Fig. (3): Some sequences of graph Tn

Theorem 2. For n = 1, the number of spanning trees in the sequence of T,, graph is given by

(59+v3477)?"((1644621-29029v3477)(3479+59v3477)"~1035 x 21 (23180 +393+/3477) +253 (3479—59+/3477) " (48604983 +824 2873477 ))?
(16119372(253X2™(3479+59V3477)+(653 +7v/3477)(3479+59+/3477)™)?

Proof: We use the electrically equivalent transformation to transform T; to T;_,. Fig. (4) illustrates the

transformation process from T, to T; .
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9a, +2
33a,+7

2(5a,+1)
33a,+7

2(5a,+1)
33a, +7
42a, +9
52a, +11 52a, +11 33a, +7
H 33a,+7 33a, +7 Hy

52a, +11

33a, +7
H, =T,

Fig.(4): The transformations from T2 to T1
11
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Using the properties given in section 2, we have the following the transformations:-

3az+1,3 9a,+2
T(Hy) = 9a,1(T;), t(Hy) = [ ]3T(H1) T(H3) = [9a2+2] T(Hy), T(Hy) = T(H3), 7(Hs) = (5 =2 ) (H,),
9(5 +1) 9a,+2
T(H) = T(Hg), T(Hy) = =22 T(He), T(Hy) = [P T(H,), 7(Hy) = T(Hg), 7(Hy,) =
33a,+7
[ea,any) F(Hs) and =(T,) =7(H,). Combining these eleven transformations, we have
©(Ty) = 4(33a; + 7)*7(Ty). (4.1)
Further 7(Tp) = [172,4(33a; + 7)*t(Ty) = 3 x 4" *af[[17,(33a; + 7)]? (4.2)
52a;+11 ,
where @j—1 = m,l = 2,3,...,1’1
5—3477 4—5+\/34—77
Its characteristic equation is 334° — 454 — 11 = 0 which have two roots 41 = and 42 pra
52a;+11
Subtracting these two roots into both sides of @i-1 = 72 =77, we get
—VETT
45-V3477 _ 52a;+11 _ 45-V3477 3477 -2 o )
-17 7 g 33a;+7 66 = (59 + V3477). 2(33a;+7) (4.3)
45+V3477 _ 52a;+11 _ 45+V3477 3477 a; (45+6:477)
17 g 33a;+7 66 = (59 = V3477). 2(33a;+7) (4.4)
;- 3479+59+/3477
Let by = = ey Then by Eqs. (4.3) and (4.4), we get b, = (—)bl and b; =
66
(3479+59\/347 4794y i,
Therefore
3479+59\/ﬁ n—i 45+\/W 45—/3477
Lo )i by =257
i = (3479+59«/W)n ib,— - Thus
(3479+59m)n_1(111+2\/W)L45—\/ﬁ
3 = 3479+59\/W n—1,653+7/3477. ’ (4.5)
( Y-t (ST, 1y
52a,+11

Using the expression @n-1 = Z2 —=" and denoting the coefficients of 52a, + 11 and 33a, +7 as @y, and

Bn, we have

33a, + 7 = ay(52a, + 11) + B,(33a,, + 7),
a,(52a, +11) + B, (33a, + 7)
ay(52a, + 11) + B,(33a, + 7)’
a,(52a, +11) + ,(33a, + 7)
a, (52a, + 11) + B;(33a, +7)’

33a,.,+7=

33a, ,+7=

33an—i +7 = a;j(52an+11)+p;(33an+7) : (46)

aj_1(52an+11)+B;_1(33an+7)
@i41(52an+11)+Bi41(33an+7)

3341y +7 = a;i(52an+11)+;(33an+7) (4.7)
_ an,(52a, +11) + B, ,(33a, +7)
33, + T = (52a, + 11) + B,_(33a, +7)
Substituting Eq.(4.6) into Eq.(4.2), we obtain
©(Tn) = 3 x 4" af[an—5(52an + 11) + fr-2(33a, + 7)]? (4.8)
) 2ap+11
where @ = 0,f =1 and @ = 33,5, = 7. By the expression @1 = Z3,— and Egs. (4.6) and (4.7), we
have
@ipy =590 — ;15 By = 596 — By (4.9)
L. ) ) 2 ) 59++/3477
The characteristic equation of Eq. (4.9) is #~ = 591 + 1 = O which have two roots 41 =~ and #z =
59—-+/3477
2 ! . . . .
The general solution of Eq. (4.9) are @i = Cif + Coig; By = dypy + dapi;,
Using the initial conditions @o = 0,8y = 1 and @1 = 33, B, =7  yields
_ 113477 59 + 3477 , 11v3477 59 —3477
%= 1159 2 )T 1159 2 )
1159-15v3477 ,59+V3477 1159+15vV3477 ,59—vV3477
Bi= (% )+ (=) (4.10)

If @& =1 it means that n Without any electrically equivalent transformation. Plugging Eg. (4.10) into

Eq.(4.8), we have
T(Tn) =3X 4n—1a12 [(23180*‘393@ 59+W

n-2 23180—-393v3477 ,59-V3477
s )T+ (

— ( AN = 2. (4.11)

12
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When n =1 7(T}) = 3 which satisfies Eq.(4.11). Therefore, the number of spanning trees in the sequence
of Tridiminished icosahedron graph is given by

23180+393v3477 ,59+V3477 23180-393v3477 ,59—3477

r(th) = 3 x 41 (R )2 4 (R 2n = 1, (4.12)
where
(3479+59\/ﬁ)n 1(111+2\/34T) (45—\/34T)
4 = 3479+59\/3477 n—1,653+7\3477 n=1 (4.13)
¢ L= 4
Inserting Eq.(4. 13) into Eq.(4.12) we obtain the result. O

5. Number of spanning trees in the sequences of Y,, graph

Consider the sequence of graphs Y;, Y, ..., Y,, constructed as shown in Figure 5.

According to this construction, the number of total vertices |V(Y,)| and edges | E(Y,,)| are |V(Y,)| =
9n-6 and |E(Y,)| =18n-15,n=1, 2, .... The average degree of Y,, is in the large n limit which is 4.

Aﬁ

Fig. (5): Some sequences of Yn

Theorem 3. For n >1, the number of spanning trees in the sequence of Z,, is given by ,
3 x 2n73 (—29(—27 +/1443) + (2103 + 59/1443) (2887 + 76\/1443)’1_1)2 ((11063 —2911443)(38 + V1443)" + (38 — v1443) (11063 + 291\/1443))

231361 (1218 +6(278 + 5v1443)(2887 + 76\/1443)"_1)2

Proof: We use the electrically equivalent transformation to transform Y; to Y;_;. Fig.(6) illustrates the
transformation process from Y, to V;.

13
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3a, +1 . 3a, +1
3(42a,+11) 2 3 3(42a,+11)

42a,+11

3a, +1
3(42a,+11)

572, +15
42a, +11

57a, +15
42a, +1

2(4a,+1)
42a, +1

2(4a,+1)

57a,+15
42a, +11

57a,+15

2(4a,+1)

42a, +11

57a,+15 57a, +15

428, +11 Y ]
Hg HlU

65a, +17
2a, +11

65a, +17
42a, +11

Hy =Y,

Fig.(6): The transformations from Y2 to 11
16
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Using the properties given in section 2, we have the following the transformations-

1
(H,) = [_]3T(Y2)'T(Hz) = t(H,),7(H;) = 9a,7(H,), T(H,) = (

)ZT(Ha),

3a,+1 4a,+1 3(3 +1)
T(Hs) = === t(H,),7(Hy) = T(Hs), 7(H;) = 9 )T (He), T(Hy) = [ ;‘111]3 (H7) T(Ho) = T(H),
42 +11
t(Hyo) = ﬁ (Hy) and (Y1) = 7(Hyo). Comblnlng these eleven transformations, we have
1(Y,) = 2(42a, + 11)%z(Y,). (5.1)
Further T(Y,) = [Ti2, 2(42q; + 11)*1(¥,) = 3 x 2" ' af[[[}L, (424, + 11)]? (5.2)
65a;+17 . . .

where @1 = oo 0= 2,3, its characteristic equation is 424° — 542 — 17 = 0 which have two
roots

27—-V1443 27+\/ 1443
A= and 42 = —;

. . _ 65a;+17
Subtractlng these two roots into both sides of @i-1 = 57 "7, we get
S

27—-V1443 65al+17 27—-V1443 Iy a'_27
41T T T e 2 = (38 + V1443). 42a;+11 (5.3)

274v1443 65ai+17 27+v1443 /— '_27+ e
=177 T aatnn 42 = (38 — v1443). 42a,+11 (5.4)

27—\/@

Let b, = Then by Egs. (5.3) and (5.4), we get bi—1 = (2887 + 76V1443)b; and b; = (2887 +

aj- 27+m
76V1443)"" lbn-Therefore.

(2887+76M)"‘i(27+;/2“T)bn 27—;/214T
a4 = (2887+76y1443)"~ip, —1
Thus
o = (2887+76y/1443)"1(2103+59/1443) +29(27 —/1443)
1= 6(2887+76y1443)"~1(278+51443)+1218 ) (5.5)
65a,+17
Using the expression @1 = ;2= and denoting the coefficients of 65@» + 17 and 42ay + 11 as @y and
Bn, we have
42a, + 11 = ay(65a, + 17) + f,(42a, + 11),
a,(65a, +17) + B, (42a, + 11)
420, , +11 = .
ay(65a, +17) + By(42a, + 11)
65a, + 17) + 42a, + 11
42a, ,+11 :az( an ) + p.(42a, )'
a,(65a, +17) + B, (42a, + 11)
_ aj(65an+17)+Bi(42an+11)
420, +11= @j_1(65an+17)+Bi_1(42an+11)’ (5.6)
ai+1(65an+17)+[3i+1(42an+11)’ (5.7)

A2ay- 41y +11= @;(65an+17)+B;(42an+11)
a,_,(65a, +17) + f,_,(42a, +11)

a,_3(65a, + 17) + B,_3(42a, + 11)

Substituting Eq.(5.6) into Eq.(5.2), we obtain

t(Y,) = 3 x 2" 1a?[a,_,(65a, + 17) + B,_,(42a, + 11)]? (5.8)

42a, +11 =

65a,+17
where @ = 0,8, = 1 and @1 = 42,5, = 11 By the expression @n-1 = 4zzn+11 and Egs. (5.6) and (5.7), we
have
Uiy =760 — ;_4; Py = 76B; — By (5.9)

The characteristic equation of Eq. (5.9) is 4 — 761 + 1 = 0 which have two roots t4 = 38 + V1443 apg
Hy =38—+1443 The general solutions of Eq.(5.9) are @ = Ci 4 + Copt3; B = dypg + dauts,
Substituting the initial conditions @ = 0,80 = 1 and o, =42, 8 =11, yields

7V1443 V1443 .
@ = e (38 + VT443) - — (38 — VI443);
B = (P21 (38 4 vTAA3)! + (B2 (35 — VT43) (5.10)

If ap = 1, it means that Y» without any electrically equivalent transformation. Plugging Eg. (5.10) into

Eq.(5.8), we have
T(fy) = 3 x 2012 (X2 (35 4 \Taggyn-2 4 (2N 35 VTAZE) 22 2. (5.10)
When n = 1, (Y1) = 3 which satisfies Eqg. (5.11). Therefore, the number of spanning trees in the sequence
of Y graph is given by
17
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T(Yy) = 3 x 2" e[ (38 + VIAA3) 2 + (R (38 - VIAA3) 2 n 2 1 (5.12)

Where
_ (2887+76y1443)""1(2103+591443)+29(27—1443) n>1
1= 6(2887+76/1443)"1(278+5y1443)+1218 = (5.13)
Inserting Eq. (5.13) into Eq.(5.12) we obtain the result. U

6. Number of spanning trees in the sequences of Z,, graph
Consider the sequence of graphs Z,, Z,, ..., Z,, constructed as shown in Figure 7.
According to this construction, the number of total vertices |V(Z,,)| and edges | E(Z,)| are |V(Z,)| =

9n-6 and |E(Z,)| =21n-18,n=1, 2, .... The average degree of Z, is in the large n limit which is %.

Aﬁ%ﬁ%

Fig. (7): Some sequences of Zn

Theorem 4. For n >1, the number of spanning trees in the sequence of Z,, is given by
2
3><4"—4((784—171m)(55+12m)n+(55—12\@)”(784“71@)) (20(—2+\/21)—4(46+11\E)(6049+1320\m)"_1)2

— 172
49(85+(139+24v21)(6049+1320v21) " )

Proof: We use the electrically equivalent transformation to transform Z; to Z;_,. Fig. (7) illustrates the
transformation process from Z, to Z;.

18
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3a,+2 4 . 3a,+2
3(51a,+31) & 3(51a,+31)

3(51a,+31)
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69a, +42 /2(5a,+3)
69a,+ 42 5la, +31
51a, +31

5la, +31

69a,+42

2(5a,+3)
p— 5la, +31
a,+
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79a, + 48

51a, +31
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Fig.(8): The transformations from Z2 to Z1

Using the properties given in section 2 , we have the following the transformations:-

T(Hy) = [1]37(22)'7(1'12) = t(H,),T(H;) = 9a,T(H,), T(H,) =

7(Hs),
©(Hs) = T(H,), 7(Hg) = 2 1(Hy), 1(H;) = T(He), 1(Hg) = 9C L )(Hy), r(Hg) = [i(fjfjfr 7(Hy),

51 +31
t(Hy) = t(Hy), t(Hyy) = ﬁ 7(Hy) and 7(Z1) = 7(Hy1)- Combining these twelve transformations,
we have
1(Z,) = 4(51a, + 31)%t(Z,). (6.1)
Further T(Z,) = [T}, 4(51a; + 31)%2(Z;) = 3 x 4" af[[1},(51a; + 31)]° (6.2)
79a;+48 . . L .
where @i—1 = S o== 1 = 2,3, . Its characteristic equation is 172% = 164 — 16 = 0 which have two
roots
8— 4F 8+4F
4 = and 4, = —
. . 79a;+48
Subtractlng these two roots into both sides of @i-1 = 57757, we get
_ 8-4V21 _ 79a;+48 8- 55 + 12721 4= NT
%i-1 17 5la;+31 = ( ) 51a;+31 (6.3)
8+4V21 _ 79a;+48 s+4\/_ 1) & SHH
=17 717 T s1ai431 =(5-12 ) 51q; +31 (6.4)
o, 8421
Let b; = —2=. Then by Egs. (6.3) and (6.4), we get bi—1 = (6049 + 1320V21)b; and b; = (6049 +
aj—————

.17
1320v21)""'b,,. Therefore.

(6049+132021)"~ I(B‘L‘*‘F)hn—g_f;m
i= (6049+132021)"iby—1
Thus
__ 4(6049+1320v21)" " 1(46+11y21)+5(8-4+21)
1= (6049+1320v21)"~1(139+24421)+85 (6.5)

79a,+48 . .
Using the expression @z-1 = 72—+ and denoting the coefficients of 79, + 48 and 51a, + 31 as @y and
B, we have
51a, + 31 = a,(79a, + 48) + ,(51a, + 31),
@, (79a, + 48) + B, (51a, +31)
5la,_,+31 = )
(79, + 48) + By(51a, + 31)
@,(79a, + 48) + B,(51a, + 31)
a,(79a, + 48) + B, (51a, +31)’

51a,_, +31 =
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a;(79an+48)+p;(51an+31)

51la,-; +31 = @j_1(79an+48)+B;_1(51an+31)’ (6.6)
_ @i+1(79an+48)+Bi11(Slan+31)
S1ay-41) +31 = @;(79an+48)+B;(51an+31) (6.7)

a,_»(79a, + 48) + B,_,(51a, + 31)
a,_3(79a, + 48) + B,_;(51a, + 31)
Substituting Eq.(6.6) into Eq.(6.2), we obtain

51la, +31 =

1(Z,) = 3 x 4" 'af[a,_,(79a, + 48) + B,_,(51a, + 31)]? (6.8)
. 79an t+4

where @o = 0,8, = 1 and @1 = 51, B; = 31, By the expression dn-1 = Stan i3l 2 and Egs. (6.6) and (6.7), we

have

@iy = 110a; — ;45 Biyq = 11068, = By (6.9)
The characteristic equation of Eq. (6.9) is #> — 110x + 1 = 0 which have two roots &1 = 55 + 1221 ang
#, = 55 — 1221 The general solutions of Eq.(6.9) are @ = ¢l + Cyub; B = dypd + dpb,

Substituting the initial conditions @0 = 0,80 = 1 and @ = 51,8, = 31 yields

17
a; = 1\6/8_ (55 + 12V21)! — \/_(55 - 12v21)}
21— 2«/_ 21+2«/_

Bi= ()55 + 12V21)" + ( )(55 — 12v21)’ (6.10)

If ap = 1, it means that Zn without any electrically equivalent transformation. Plugging Eq. (6.10) into
Eq.(6.8), we have

T(Z,) = 3 x 4M a2 [ (B2 (55 4 12¢21)" 2 + (B8 (55 — 12421)" 2%, n > 2. (6.11)
Whenn =1,7(Z) =3 WhICh satisfies Eq.(6.11). Therefore the number of spanning trees in the sequence
of Zu graph is given by

2296+501v2 2296—-501v2

©(2,) = 3 x 4" a3 [N (55 4 1207 + (2N (55 122Dz 1 (612)
Where
_ 4(6049+1320y/21)" " 1(46+11y21)+5(8—4+21)
1= (6049+1320y21)"~1(139+24+21)+85 mzl. (6.13)
Inserting Eq.(6.13) into Eq.(6.12) we obtain the result. o

7. Numerical Results
Tablel: illustrates some the values of the number of spanning trees in the graphs Xn » Tn» Ynand Zn,

n T(Xpn) (Tw) (V) T(Zn)

1 3 3 3 3

2 38988 47628 40344 193548

3 389606448 662815488 465904332 9366382128

4 3892947158208 9223739666112 5380263088224 453257961670848

5 38898321771725568 128357550588955392 62131276279240752 21934059131316880128

6 388671968855929801728 1786223526416070131712 | 717491956951619945856 | 1061432982230559089691648

8. Spanning Tree Entropy

After having explicit Formulas for the number of spanning trees of the sequence of the four families of
graphs X,,T,,,Y, and Z,, we can calculate its spanning tree entropy Z which is a finite number and a very
interesting quantity characterizing the network structure, defined as in [26,27] as: For a graph G ,

_ Int(G)
Z(G) ‘flaoo |V(G)|

Z(X,) = a(ln [4] + 2 In[25 + 4V39]) = 1.02328221,

(8.1)

2
Z(T,) = 5(1n[59 +1/3477]) = 1.060088273,

Z(Y,) = %(ln[Z] + 2 In[38 + V1443]) =1.039363057.
Z(Z,) = %(ln[4] + 2In[55 + 12+/21]) =1.198565531.
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Now we compare the value of entropy in our graphs with other graphs. It is clear that the entropy of the Z,,
graph is greater than the other three graphs and the entropy of the X,, graph is smaller than the other three
graphs. In addition the entropy of the our studied graphs X,,,T,, and Y,, is smaller than the fractal scale free
lattice [28] which has the entropy 1.040 and two dimensional Sierpinski gasket [29] which has the entropy
1.166 of the same average degree 4, while the entropy of the Z, graph is larger than the entropy of the
fractal scale free lattice and less than the entropy of two dimensional Sierpinski gasket.

9. Conclusions

In this work, we enumerate the number of spanning trees in the sequences of four sequences of graphs of
average degree four based on Tridiminished icosahedron graph using electrically equivalent transformations.
An advantage of this method lies in the avoidance of laborious computation of Laplacian spectra that is
needed for a generic method for determining spanning trees.
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