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Abstract

The number of spanning trees is an important quantity characterizing the reliability of a network. In this
paper, we find the explicit formulas of the number of spanning trees of some new of the families of sequence graphs
generated by triangle graph with its special feature in iteration. Using the electrically equivalent transformations, we
obtain the weights of corresponding equivalent graphs and we further derive relationships for spanning trees between
these graphs and transformed graphs. Finally, we compare the entropy of our graphs together and with other studied
graphs of average degree.
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1. Introduction
Calculating the spanning trees number in a graph is one of the main studied problems in graph theory.
A spanning tree of a connected graph G with n vertices is a connected (n — 1) — edge subgraph of G. The number
of spanning trees of a graph G denoted byz(G), also called the complexity of G [1], is an important, well-studied
quantity in graph theory, and appears in a number of applications. Most memorable application fields are network
reliability [2], recounting certain chemical isomers [3], and counting the number of Eulerian circuits in a graph [1].
In particular, counting spanning trees is an essential step in many methods for computing, bounding, and
approximating network reliability [4]. In a network modeled by a graph, intercommunication between all nodes of
the network implies that the graph must contain a spanning tree and, thus, maximizing the number of spanning trees
is a way of maximizing reliability.
In 1847, a classical result of Kirchhoff [5] can be used to determine the number of spanning trees for a connected
graph G = (V,E) with n vertices{vy, v,,...,v,}, and the Kirchhoff matrix L defined as n X n characteristic
matrixL = D — A, where D is the diagonal matrix of the degrees of G and A is the adjacency matrix of G, L = [a;;]
defined as follows:

deg(v;) ifi=j
L= [aij] ={-1 if(‘l?[,‘l?j) € E(G)
0 if(l?i,l?j) e E(G)

All of co-factors of L are equal to the number of spanning trees of the graph G .
Another method for calculating 7(G) . Let uy = pu, >... = u,, = 0 denote the eigenvalues of L matrix of a graph G
with n vertices. . In 1974, Kelmans and Chelnokov [6] has shown that
2(6) = - I e (L)
One common method for finding the number of spanning tress, 7(G), is the deletion-contraction method. This
method is a dependable method which allows to calculate the number of spanning trees of a multigraph G . This
method uses the fact that
7(G) =1(G—e) +1(G/e) (12)
where G —e denotes the graph obtained by deleting an arbitrary edge e, and G/e denotes the graph obtained by
contracting an arbitrary edge e [1,7]. For more methods and other techniques see [8-15]
2. Electrically Equivalent Transformations
An edge-weighted graph, whose weights represent the conductance of the corresponding edges, may be thought of
as an electrical network, which is why Kirchhoff was motivated to research electrical networks. The quotient of the
(weighted) number of spanning trees and the (weighted) number of so-called thickets—that is, spanning forests with
exactly two components and the characteristic that each component contains precisely one of the vertices u, v can
be used to express the effect conductance between two vertices u, v [16,117,18,19]. The impact of a few basic
modifications on the quantity of spanningtrees is listed below. The weighted number of spanningtrees G is indicated
by 7(G) and let G be an edge weighted graph and G be the associated electrically equivalent graph.
« Parallel edges: When two parallel edges in G, each with conductances u and v, are merged into a single edge in
G’ with a conductance of u + v, the count of spanning trees, (G "), remains unchanged compared to 7(G).
» Serial edges: If two serial edges in G, with conductances u and v, are combined into a single edge in G with a
conductance of uv/(u + v), then T(G") can be calculated as (1/(u + v) multiplied by 7(G).
e A-Y Transformation: When a triangle in G, with conductances x,y and z is transformed into an electrically
equivalent star graph in G’ with conductances x = (uv+vw+wu/u,y = (ww+vw+wu/v, and z=
(uv +vw +wu) /w, the count of spanning trees in G',7(G"), can be determined as (uv+vw +wu)?/
uvw multiplied by (G). 26
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* Y-A Transformation: If a star graph in G, with conductances u,v and w, is converted into an electrically
equivalent triangle in G with conductances x = vw/(u+v+w,y = uw/(u+v+w) and z = uv/(u+v+w),
then ©(G") is given by 1/(u + v + w) multiplied by 7(G).

In mathematics, it is common to derive new structures from existing ones. This principle extends to graphs, where
numerous new graphs can be generated from a given set. In this study, we determine the complexity for four novel

types of graphs of the same average degree we named it 1“1(") ,I“Z(n) and 1*3(") respectively.

3. Number of spanning trees in the sequences of I”l(n)g raph
The graph I”l(n) is defined recursively using the graphs 1“1(1) (triangle or K3) and 1‘1(2) as shown in Figure 1. The

graph 1"1(") ,n = 3 is obtained by replacing the central triangle in 1"1(2) by a copy of 1“1(2). In general, 1"1(")is obtained
by replacing the central triangle in I, ™" with ;). According to this construction, the number of total
vertices|V(I"1(n))| land edges |E(1"1("))|are |V(I‘1("))| =9n — 6 and |E(1"1("))| =24n—21,n =1, 2, ... The

average degree of 1“1(") is in the large n limit which is 13—6.

1—‘(1)
1 r§2)

re

Fig.1 Some sequences of the graph Il(n)
Theorem 1. For n > 1, the number of spanning trees in the sequence of the graph 1‘1(”) is given by
(323"7((5170 — 697+/55)(89 + 12v/55)" + (89 — 12v/55)" (5170 + 697+/55))2(247 — 76+/55 + (1073 +
160+/55)(15841 + 2136+/55)71*")2)/ (3025(513 + (807 + 84+/55)(15841 + 2136+/55)""1)?)
Proof: We use the electrically equivalent transformation to transform I"I(i) to I"I(i = Fig.2 illustrates the

transformation process from 1"1(2) to 1“1(1).

1 1 1

1

27
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Using the properties given in section 2, we have the following the transformations:

©(G1) = 92t (®), 7(62) = [ 7(61), T(Gs) = (62),7(Gy) = [Fa1w(G3), 7(Gs) = T(Ga),
©(Ge) = I T(6s), T(67) = [ T(Ge), r(68)=r(67),r(69)—[%] 7(Gy) 7(G10) =

13p,+8 21p,+13 81p,+50
7(6o), 7(611) = 95 % 517(610), T(612) = [ 501 T(61n), T(613) = T(Gr2), T(61a) = 52— 517(Gis)
and 77 = 7(Gya)-
Combining these fifteen transformations, we have:
T(I“l(z)) = 8(81p, + 50)21(11(1)). (3.1)
Further
(™) = 17, 8(81p; + 50)27 () = 3 x 8" 1p2 ([T, (81p; + 50)]2, (3.2)
128pl+79 ;
where Ti-1 = 5o 0= 23,001
13- 4J_ 13+4v/55
Its characteristic equation is 816% — 786 — 79 = 0 with roots 1 = and 02 = ——.
) ) ) 128p;+79
Subtracting these two roots into both sides of 7i-1 = 57 =50, we get
| _13-4V55 _ 128p;+79 _ 13-4V55 _ (89+12V55)(p— == 4‘E)
-1 27 81p;+50 27 (81p;+50) (3.3)
13+4V55 _ 128p;+79 _ 13+4v55 _ (89— 12V/55)(p;— 13+4‘/_5)
Tie1 =757 T aipeso | 27 (81p;+50) (3.4)
_13-4V55

i

2136v55)""iq,

bi
Let 9i = —gzyaves. Then by Egs. (3.3) and (3.4), we get 9i-1 = (15841 + 2136v55)q; and 9: = (15841 +
27

(15841+2136v55)"" 1(13+4F) P L3 4F)
Therefore 7i = (1584142136 V55)"Iq,—1 .
Thus
(15841+2136+/55)"" 1(BM‘/_) an—C ”_5
"= (15841 +2136V55)" " 1q,—1 ) (35)
. ] 128p,+79
Using the expression -1 = == and denoting the coefficients of 1287 + 79 and 81pn + 50 as @y and br
we have
817, + 50 = ag(1281, + 79) + by (817, + 50),
a,(128n, + 79) + b, (81r, + 50
817, | +50 = 1(128r, ) + by (81r, )’
ao(128r, + 79) + by (817, + 50)
a,(128r, + 79) + b,(81r, + 50
817, _, +50 = 2(128r, ) + b, (81r, )’
a,(1281, + 79) + b, (817, + 50)
_ ai(128rn+79)+b;(81rn+50)
81r; +50 = Qi1 (12875, +79)+b;_4 (817 +50)’ (3.6)
 @41(1287,+79) +b; 41 (817, +50)
B1m—(i+1) +50 = a;(1287,+79)+b; (817, +50) 3.7)
a,_,(128nr,+ 79) + b,,_, (811, + 50
811’2+50= n 2( n ) n 2( n )'
an_3(1287, + 79) + by_3(81r, + 50)
Thus, we obtain
t([?) = 3 x 8" 112 [a,_,(1287, + 79) + b, _,(817, + 50)]? (38)
1287,+79
where @0 = 0,by =1 and a1 = 81,b; = 50, By the expression™n-1 = s1r, 150 and using Egs. (3.6) and (3.7), we
have @i+1 =178a; —a;_1;b;41 = 178b; — b;—1 (3.9)

The characteristic equation of Eq. (3.9) is #> — 1789 + 1 = 0 with roots ¢1 = 89 + 12V55 and ¢, = 89 +
12\/_ The general solutions of Eq. (3.9) are

i = h1<P1 + hz‘Pz' b; = k1<P1 + kz‘Pz
Using the initial conditions @ = 0,bp = 1 and a1 = 81,b; = 50, yijelds

ai—ZZZO_(89+12\/_)‘ 27 ‘/_(89—12\/_)1
b, = (220 13F)(89+12\/—)l+(220+13r)(89 12+/55): (3.10)

If 7» = 1 it means that 1"1 o is without any electrically equivalent transformation. Plugging Eg. (3.10) into Eq.

(3.8), we have
T() = 3 x 8112 (2200055 (g9 4 12V5BY2 + ( (89— 125525 n = 2. (311

When n =1, 7(1}(1)) = 3 which satisfies Eq. (3.11). Therefore, the number of spanning trees in the sequence of

28820-3886V5

the graph ™ s given by 32
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t( V) = 3 x 812 (20005 g9 4 12yEyn-2 (XX (g9 _ 12VEE) 2 1. (312)
where
_ (15841+2136v55)"1(1073+160+/55)+19(13—4+/55)
1= 3(15841+2136+/55)""1(269+28v/55)+513 m=z1l (3.13)
Inserting Eq. (3.13) into Eq.(3.12) we obtain the desired result. o

4. Number of spanning trees in the sequences of I;(")graph

The graph 1"2(") is defined recursively using the graphs F(zl) (triangle or K3) and 1“2(2) as shown in Figure 3. The
graph 1“2(") ,nh = 3 is obtained by replacing the central triangle in FZ(Z) by a copy of 1*2(2). In general, I;(")is obtained
by replacing the central triangle in I, " with I*). According to this construction, the number of total
vertices|V(I"2(n))| land edges |E(1"2("))|are |V(I“2(”))| =9n— 6 and |E(1"2("))| =24n-21,n=1, 2, ... The

average degree of 1"2(") is in the large n limit which is 13—6.

(1) (2)
I r§

@
FZ

Fig. 3 Some sequences of the graph rz(n)

Theorem 2. For n = 1, the number of spanning trees in the sequence of the graph 1"2(") is given by
(34*"7((7657 — 125v3705)(61 +V3705)" + (61 —V3705)"(7657 + 125+/3705))2(—11(—21 + 3705) +
817"(3713 + 61v3705)" (—8643 + 142v3705))?)/ (61009 (561 + 3(&(3713 — 61/3705))17(307 + 4v/3705))?)
Proof: We use the electrically equivalent transformation to transform I“z(i) to I“z(i_l). Fig.4 illustrates the
transformation process from 1"2(2) to 1“2(1).

33
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Fig.4 The transformations from Fz( ) to 1“2( .
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Using the properties given in section 2, we have the following the transformations
2(G1) = BPTU3?),1(62) = 7(61), 7(G3) = 9p27(G2), T(6) = [1°7(G3), T(Gs) = T(Ga),

9p,+8
9p,+8 11p,+8 9p,+8
©(Gs) = [53,17(G5), 7(G7) = 7(Ge), 1(Ge) = 915,25 17(67), 7(Go) = [57,551°7(G) 7(Gro) =
51p,+40

7(Gy), (G11) = [18(11p2+8)]7(610)» and T(13) = 7(Gyy).

Combining these twelve transformations, we have

t(L,P) = 16(51p, + 40)2r(I,™). 4.1)
Further

(") = [T, 16(51p; + 40)20(I,") = 3 x 16" [[T,(51p; + 40)]%, (4.2)
_ Bapitet .
where Ti-1 = 57 7500 = 23,1

Its characteristic equation is 516% — 426 — 64 = 0 with roots 61 = n—;/ﬁ and 02 = 21+W

these two roots into both sides of 7i-1 = Eizl—:jz, we get

_ 21-V3705 _ 82pi+64 _ 21-V3705 _ (61+V3705)(pi— @
51 51p;+40 51 (51p; +40)

_ 21+y3705 _ 82p;+64 _ 21+V3705 _ (61—\/ﬁ)(m—@)
51 51p;+40 51 (51p; +40)
21— «/W

bi—
Let 4 = — 21+~/W Then by Eqgs. (4.3) and (4.4), we get di-1 = (

[

. Subtracting

)

(4.3)

(4.4)

3713+61+/3705
™ qn

3713+61v3705
Yiand i = ————

3713+61\/37O n-i 21+\/370 21
)" )dn—(

Therefore i = 3713+51\/370 i
8

(
Thus
(

—V3705

)

qn-1

3713+61y3705. 2143705 21-+/3705

)" )= ")
3713+51m)n 19,1 ' (4.5)
8

€
. N 82p, +64
Using the expression Tn-1 = 5=~ and denoting the coefficients of 827 + 64 and 51pn + 40 as an and br

we have

n =

51r, + 40 = a¢(82n, + 64) + by(51r;, + 40),
a,(82r, + 64) + b (51r, + 40
S1r_, + 40 = L2+ 60) + by (S1n, + 40)

ao (821, + 64) + by (517, + 40)°
a,(821, + 64) + b, (511, + 40)

a,(821, + 64) + b, (511, + 40)’

51r,_, + 40 =

;(827,+64)+b; (517, +40)

a;_1 (821, +64)+b;_; (511, +40)
a;41(821r,+64)+b; 1 (511, +40)

a;(821,+64)+b; (511, +40)

51r,_; +40 = (4.6)

: @.7)

51rn_(l-+1) +40 =

an_,(82r, + 64) + b,_,(51n, + 40)
an_3(821, + 64) + b, _3(51r, + 40)

51r, +40 =
Thus, we obtain
t(?) = 3 x 16" 1112 a,_,(821, + 64) + by _5(517;, + 40)]? (4.8)
where @ =0,by =1 gnd a1 = 51 by = 40.

821,
By the expression "n-1 = 51: +20 and using Egs. (4.6) and (4.7), we have

ajy1 = 122a; — 16a;_1; bj41 = 122b; — 16b;_4 (4.9)
The characteristic equation of Eq. (4.9) is #* — 122¢ + 16 = 0 with roots ¢1 = 61 + V3705 and ¢, = 61—
V3705, The general solutions of Eq. (4.9) are & = h1@} + hapl; by = ki o} + k5.

Using the initial conditions 8 =00, =1 and a1 = 51,b; = 40, yjelds

51v3705 513705 _
= i _ i,
@ = — 2IV3795 (61 4 3705 - —aig (61— V3705)%
1235-7v/3705 1235++/3705 i
b = (F2222) (61 + V3705)! + (Fm =) (61 — V3705)! (4.10)

If 7o = 1 it means that Fz " is without any electrically equivalent transformation. Plugging Eq. (4.10) into Eq.
(4.8), we have

() = 3% 16n—1r12[(—22477:3;9m)(61 +V3705)"2 4 (R 61 _ 3705 2 n 22 (4.11)
When 1 =1 (I3 = 3 which satisfies Eq. (4.11). Therefore, the number of spanning trees in the sequence of
the graph L™ s given by

37
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o) = 3 x 167172 208 61 1 37052 4 (HTNTE) (61 3705y =1 (442)
where

_ (M)"‘l(um+23«/37T)+11(z1—m) -
"o 3@Z2*ENT05 )1 (307.4.4/3705) + 561 = (4.13)
Inserting Eq. (4.13) into Eq. (4.12) we obtain the desired result. 0

5. Number of spanning trees in the sequences of Ig(")graph

The graph 1"3(") is defined recursively using the graphs 1"3(1) (triangle or K3) and 1"3(2) as shown in Figure 1. The
graph 1“3(") ,nh = 3 is obtained by replacing the central triangle in FS(Z) by a copy of 1*3(2). In general, 1‘3(")is obtained
by replacing the central triangle in 1“3("_1) with 1“3(2). According to this construction, the number of total
vertices|V(1"3("))| land edges |E(1"3("))|are |V(1"3("))| =9n— 6 and |E(I“3("))| =24n-21,n=1, 2, ... The

average degree of 1“3(”) is in the large n limit which is 13—6.

1~3(1) 1~3(2) I~3(3)
Fig. 5 Some sequences of the graph rg(n)

Theorem 3. For n = 1, the number of spanning trees in the sequence of the graph Fg(“) is given by
(4""2((15113 — 768+/381) (137 + 7+/381)" + (137 — 7v/381)™(15113 + 768+/381))?(50(7962 + 455+/381) —

61(1”195%)"(857649 + 43939v381))?)/(1481851875(97625 + 4025381 + 115950 (18719 + 959+/381)1)2)

Proof: We use the electrically equivalent transformation to transform 1“3(0 to 1“3("_1). Fig.6 illustrates the
transformation process from 1"3(2) to 1“3(1).

38
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(4p, +3)(12p, +11)*P (4p, +3)(12p, +11)

12p* +33p +16
(4p, +3)(12p, +11)

1 8(2 pz +l)2
(4p, +3)12p, +11) 1
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812y, +1)? (4P, +3)(
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12p, +11 & 12p,+11
57p,+ 46 ! 57p, + 46

57p, +46

12p, +11
57p, +46

69 p, + 57 2(11[)2 +8)
57p,+46( STP.+4

69p, +57
57p, +46

69p, +57
57p, +46

69p, +57

2(ip, + 8)
57p, + cdip, o)
p,+46 P, 57p, +46
69p, +57
57p, + 46 723 P, + i;
P, +
Gy, 91p, +73 91p, +73 :
57p, +46 Gls

91p, +73
57p, +46

F(l) = Gl3

2 1
Fig.6 The transformations from Fs( ) to 1"3( )

Using the properties given in section 2, we have the following the transformations:
2p,+1)?
©(Gy) = [EE (), 7(6y) = [ 1Pr(61),7(6s) = [21P1(62), 1(6y) = 1(6Go),

(2p, +1)? _ (4P, +1)(4p2+3) 3 _ _ @dp,+3)(12 p, +11)
1(65) = A1 (Gy),1(6g) = [ 3r(Go), 1(67) = 1(Ge) 7(Gy) = (L2210
11p,+8

©(Gs) = (6o, 7(G10) = I35 417(Go), T(G1r) = [ 1 0(610), 7(Grz) = (G1a), T(Grs) =
[ 57p,+46

18(11p2+8)]T(G12) and T(13) = ©(Gy3)-
Combining these fourteen transformations, we have
t(L?) = 16(57p, + 46)*t (). G.1)
Further
(m)y 2 @y n-1
(™) = [T, 16(57p; + 46)%1(I; ) = 3 x 16" *pZ [T, (57p; + 46)]% (5.2)

91p;+73 i
Ti_q1 = ,i=23,...,n
where Ti-1 = 52000

17(G7),

45-74381 45+7\@
Its characteristic equation is 576 — 456 — 73 = 0 with roots &1 = —7, —and 02 = . Subtracting these

1p;+73

9
two roots into both sides of i-1 = 57 77, we get
45-7V/381.

45-7v381 _ 91p;+73  45-7v381 _ (137+7V381)(pi—— " —)

-1 114  57p;+46 114 2(57p; +46)
45+7vy381
45+7v381 _ 91p;+73  45+7v381 _ (137-7V381)(p— " —)

-1 114  57p;+46 114 2(57p; +46)

(5.3)

(5.4)

42
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45— 7@

i~ 187194959381 18719+959v381
Let 9i = —zrvaer. Then by Egs. (5.3) and (5.4), we get 9i-1 = (———o— iand 4 = (———,— )"~ 'Gn

Con 18719+959\/§ n—i A5+7V381. 45-7v/381.

) T =)
Therefore i = (wmwsgm)n p .
Thus
(1571‘”‘35‘3@)11 1(45+7\/ﬁ) n_(45—7\/m)

n = 114 114 ° (5.5)

13719+959«/ﬁ)n 1

§ w0 qn—1

] . 91p,+73
Using the expression ™-1 = 57— and denoting the coefficients of 917. + 73 and 57Pn + 46 as an and bn
we have
571, + 46 = ao(91r, + 73) + by (571, + 46),
a,(91r, + 73) + by (571, + 46
57Tn_1+4-6= 1( n ) 1( n )‘
ag(91r, +73) + by (571, + 46)
a,(91r, +73) + b, (571, + 46
57Tn_2+4-6= 2( n ) 2( n )‘
a;(91r, + 73) + by (571, + 46)
_a;(911,,+73)+b; (571, +46)
57— + 46 = Qj_1 (917 +73)+b;_1 (577 +46) (5.6)
aiy1(911,+73)+b; 41 (571, +46)

57Tn-(i+1) +46 = (911 +73)+b; (571, +46) (5.7)

an_,(91r, + 73) + b,,_, (571, + 46)
an_3(917, + 73) + by _3(571, + 46)

57r, + 46 =

Thus, we obtain
(P = 3 X 16" 12 [ay_5 (917, + 73) + by_p (571, + 46)]2 (5.8)

91rn+73

where @0 = 0,by = 1and @1 = 57,b; = 46, By the expression Tn-1 = 57, and using Egs. (3.6) and (3.7), we

have

Aiyq1 = 13761,: - 25ai_1;bl—+1 = 137bl - 25bi_1 (59)
_ . . 2 3 137+7+/381 137-7+381
The characteristic equation of Eq. (5.9) is @” —137¢+25=0 withroots 1 = —— —and 2 =—— —.

The general solutions of Eq. (5.9) are @& = h1f + ha@}; by = ki o} + ko5

Using the initial conditions @ = 0,00 = 1 and a1 = 57,b; = 46 yijelds
19V381 137+ 7V381 , 19v381 137 - 7\/38

o=

T 889 2 889 2
889—-15v381, ,137+7v381 889+15+v381, ,137-7+/381
by = ( pr )( )+ 778 )( ) (5.10)

If = = 1 it means that 1"3( )| is without any electncally equivalent transformation. Plugging Eq. (5.10) into Eq.
(5.8), we have

(M) = 3 x 16" 12[(

91567—-4687v381 ,137—-7v381

91567 +4687V381, ,137+7v381 — )( )n_z]z,n > 2.

e "2+ ( (5.11)

When n =1, T(Fg(l)) = 3 which satisfies Eq. (5.11). Therefore, the number of spanning trees in the sequence of

the graph 3 is given by

- 91567 +4687+/381, ,137+7+/381 91567—-4687+/381, ,137—-7+/381
(V) = 3 x 16" 12 [ () ( 2 () Mzl (512)
where
(18719+959\/E)n 1(7962+455\/?F)+61(45 7\/m) -
= ,n> 1.
! 3(718“93595)" 1(3905+161/381)+3477 (6.13)
Inserting Eq. (5.13) into Eq.(5.12) we obtain the desired result. ]
6. Numerical Results
Tablel: illustrates some the values of the number of spanning trees in the graphs =(r,"”), 7(r,")
n

and TI™).

n T(I-i(")) T(rz(n)) T([;(n))

1 3 3 3

2 1028376 1023168 1291008

3 260650372800 243223769088 386832575232

4 66063400841025024 57797705787506688 115857765449084928

5 16744165306881362178048 13734568487453215162368 34699802317209927155712

6 | 4243909157792864879554166784 | 3263769190981487290774192128 | 10392711055982113862055886848
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7. Spanning Tree Entropy

After having explicit Formulas for the number of spanning trees of the sequence of the six graphs 1“1(”), 1“2(") and
1"3("), we can calculate its spanning tree entropy Z which is a finite number and a very interesting quantity
characterizing the network structure, defined as in [20] as: For a graph G,

. Int(G)
2(6) = 111% Vel

1
(™) = 5 (in[8] + 2 In[89 + 12V55]) = 1.3825495018

(7.1)

2
(™) = glin4(61+ V3705)] = 1.3753863752.

1
Z(r™My = 5 Unl4] +2n[137 + 7V381]) = 1.4010979187.

Now we compare the value of entropy in our graphs with other graphs. The entropy of the graph 5, is
larger than the entropy of the graph ;™ and the graph "™ . In addition the entropy of our three families
L, 1™ and I,"™ which have average degree 16/, is larger than the entropy of fractal scale free lattice [21]

which has the entropy1.040 of average degree 4 and the entropy of apollonian graph [22] which has the
entropy 1.3540 of the same average degree 5.

8. Conclusions

In this paper, we calculate the number of spanning trees in the sequences of some graphs generated by triangle graph
using electrically equivalent transformations. The feature of this technique lies in the parry of strenuous computation
of Laplacian spectra that is prerequisite for a generic method for determining

spanning trees. In addition, our results have shown that the entropy is related to the average degree of the graph.
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